
Sound Synthesis for Impact Sounds in Video Games

D. Brandon Lloyd Nikunj Raghuvanshi Naga K. Govindaraju

eXtreme Computing Group

Microsoft Research

Abstract

We present an interactive system for synthesizing high quality,
physically based audio on current video game consoles. From a
recorded impact sound, we compute a modal model, which we use
to synthesize variations of the sound on the fly. We show that for
many sounds greater quality is obtained by using the amplitude en-
velopes of the extracted modes directly rather than fitting the en-
velopes to the standard exponential decay model. When combined
with a residual, the synthesized sounds in most cases are indistin-
guishable from recorded clips. Compared to using multiple prere-
corded clips to obtain variation, our system consumes less of the
limited console memory. For sounds that are less amenable to
modal synthesis, we introduce a simple filter that generates plau-
sible variations from a single clip. Our system integrates easily
with existing audio middleware and have been implemented in the
Xbox360 game Crackdown II.

Keywords: sound synthesis, interactive audio

1 Introduction

High quality audio is crucial for achieving realism and creating a
compelling user experience in video games. This is especially true
when a game features an open world environment where the user
can interact with surrounding objects (see Figure 1). For example,
the user may throw objects around, stack them up, or knock them
over, just as in the real world. When coupled with a physics engine,
the animation of the objects can be very realistic. This realism is
enhanced when accompanied by realistic audio that corresponds to
the animation.

Generating realistic, physically-based audio on today’s gaming
consoles presents a number of challenges. First, console mem-
ory capacities are limited, and audio memory budgets are typically
quite low (e.g. 25 MB for all audio / 2MB for impact sounds in the
game in Figure 1). Prerecorded clips provide high quality contact
sounds with very little computation, but they must reside in mem-
ory because the latency of streaming from disk is too high. For
realistic audio, a single clip for each kind of object is not enough
because impact sounds in the real world exhibit small variations in
timbre that depend on where the impact occurs on the surface of the
object. To achieve sufficient variation, multiple clips are required,
which exacerbates the memory problem. Second, the audio system
needs to operate within a fixed (usually small) CPU budget. This
simplifies the task of distributing computational resources between
various subsystems in a game (e.g. graphics, physics, and artifi-
cial intelligence). Respecting a fixed budget is a challenge when
a large number of impact sounds can be active at any given time.
Finally, solutions for realistic audio should ideally integrate easily

Figure 1: We generate high-quality sounds in real-time for the
open-world video game Crackdown II running on an Xbox360 con-
sole. The player can interact freely with objects in the environment.
Our system synthesizes variations of the resulting impact sounds on
the fly with less memory than previous techniques that used multiple
prerecorded clips. Our system integrates easily with existing audio
middleware, simplifying the authoring process.

with existing audio tools and production pipelines, provide suffi-
cient control, and be easy for audio designers to use.

Sound synthesis is an attractive solution to the memory problem.
Instead of storing multiple prerecorded clips in memory, sound syn-
thesis can be used to generate variations on the fly. In addition, the
underlying synthesis models can often be represented quite com-
pactly. Most existing techniques for interactive, physically-based
collision sounds rely on a modal representation that expresses the
output sound as a superposition of independently oscillating res-
onant modes, each with its own characteristic gain, frequency, and
exponential decay rate. But the quality of the sounds generated with
the idealized model of exponential decay is often unsatisfactory, as
we show in our results. Exponential decay can fail to capture the
energy transfer between modes [Chadwick et al. 2009] and other
nonlinear effects. Even with an accurate physical model, recreat-
ing the richness of real world sounds is still challenging because it
requires a detailed simulation of the impact forces, which can be
difficult to formulate and is beyond the stringent performance re-
quirements of current video games. Modal synthesis also fails to
reproduce some sounds that lack strong modal components (e.g.
a footstep). There has also been extensive work in musical syn-
thesis to accurately reproduce real sounds. The spectral modeling
synthesis (SMS) [Serra and Smith 1990] approach models the fre-
quency spectrum of a sound rather than the underlying physics that
generated it. SMS typically decomposes the sound into partials -
quasi-sinusoidal tracks that vary slowly over time in amplitude and
frequency, and a noisy residual. This approach is more general than
modal synthesis and can produce higher quality results, but it is also
more expensive to compute.

Main Results: In this paper we present a system for synthesiz-
ing realistic impact sounds, which was used in the Xbox360 game
Crackdown II. The system computes variations of the sounds un-
der tight memory and CPU constraints. For modal sounds, we use



modal synthesis, but unlike other interactive modal synthesis tech-
niques, we do not assume ideal exponential decay. Instead we draw
on spectral modeling synthesis (SMS) and for each mode we use
the actual amplitude envelopes extracted from an impact clip. This
approach maintains the good performance of modal synthesis but
can greatly improve the quality of the synthesized sounds. In ad-
dition we compute a residual to capture details of the sound that
are missed in the modal representation. We also handle nonmodal
sounds using a multi-dip filter. Our system has three main features:

• Higher quality modal synthesis using sampled mode ampli-
tude envelopes instead of ideal exponential decay

• A low-complexity representation for mode parameters that is
both compact and suitable for high performance computation
of the synthesized sound

• A filter for nonmodal sounds that can generate variations of a
single clip that are similar in character to those generated by
modal synthesis

We employ quality scaling techniques that gracefully reduce sound
quality in order to meet fixed CPU and memory budgets. Even with
a small budget of 10% of a CPU we can handle dozens of simulta-
neous impact sounds without significant loss of quality. Our system
is implemented as a set of plugins for Wwise, a popular audio en-
gine. The plugins are easy to use and require minimal changes to
existing audio pipelines.

The rest of this paper is organized as follows. We will first describe
how our techniques are related to previous work. In Section 3 we
give an overview of our techniques and describe their implementa-
tion in Section 4. We then discuss some results in Section 5 and
conclude with some ideas about future work.

2 Related Work

The field of sound synthesis using computers is broad. The text
by Perry Cook [2002] is a good general introduction to synthesis
techniques focussed on interactive applications.

Our approach is closely related to several previous modal synthesis
techniques. Van den Doel et al. [2001] use modal models derived
from sound samples captured by striking an object at different lo-
cations on its surface. The modal model is used to generate impact,
rolling, and sliding sounds. We use a single sound sample, typically
obtained from a large library of prerecorded sounds. Obrien et al.
[2002] compute modal models from a polygonal model and mate-
rial parameters of an object. Raghuvanshi and Lin [2007] suggest
a number of optimizations to reduce the computation needed for
real-time modal synthesis. Bonneel et al. [2008] accelerate modal
synthesis for real-time applications by combining modes from all
active voices in the frequency domain and performing a single in-
verse Fourier transform to return to the time domain. Much of the
efficiency of frequency domain methods is lost when integrating
with existing audio middleware, which mixes voices in the time do-
main and therefore requires an inverse Fourier transform per voice.
All of these modal synthesis techniques assume ideal exponential
decay for mode amplitudes. Because real world sounds do not al-
ways conform exactly to this assumption, the sounds generated by
these techniques often sound too ”clean”. Adding arbitrary ampli-
tude envelopes is fairly straightforward for the time domain meth-
ods, but is more difficult for frequency domain methods like that of
Bonneel et al.

Whether the parameters for the modal model are derived from sim-
ulation or from measurement, the intermediate representation is the
same. Both approaches have advantages and disadvantages within
the context of the audio production pipeline of a video game. The

advantage of the simulation approach is that it is possible to create a
synthesis model without expensive measurement equipment or the
actual physical object. Simulation also computes automatically the
variation in impact sound at different locations on the object. One
disadvantage of simulation is that it requires a geometric model,
which creates additional dependencies between audio production
and the rest of the development effort that currently do not exist.
Another difficulty is that the material parameters used in the simu-
lation are not necessarily intuitive for audio designers. The main ad-
vantage of the data-driven measurement approach is that it is fairly
easy to use. The audio designer simply provides an example of
the desired result and the system generates a corresponding syn-
thesis model. It also fits well with the typical production pipeline
where the audio designer selects sounds from large libraries of pre-
recorded samples or uses sounds recorded by foley artists.

Our system utilizes aspects of spectral modeling synthesis (SMS)
[Serra and Smith 1990]. SMS models a sound as stable sinusoids
(partials) plus noise (residual component). Sinusoids are detected
in an input sound by analyzing its short-time Fourier transform
(STFT). The STFT gives information about the phase and magni-
tude of the sound over frequency and time. Sinusoids show up as
peaks in the magnitude spectrum. Peaks in successive time slices
that change relatively slowly are strung together to form partials.
Partials are represented as amplitude and frequency samples over
time. Subtracting out the partials from the input sound leaves a
noisy residual. A coarse spectral envelope is computed from the
residual, which is used to shape white noise in the synthesis step.

Our modal synthesis system uses a sampled amplitude envelope
like the partials of SMS, but modes have constant frequency, which
leads to a number of performance optimizations, which we describe
later. We also use a residual, but we do not synthesize it on the fly.

3 Modal synthesis

When an object is struck, the object vibrates at specific frequencies
which are called its resonant modes. The amplitudes of the mode
vibrations decay with time, with low frequency modes generally
decaying more slowly than high frequency modes. To reproduce
an impact sound, modal synthesis simulates the vibration of the
resonant modes. Mathematically, the synthesized signal x(t) can
be computed as:

x(t) =
M
∑

m

gmAm(t) sin(2πfm(t) + φ0,m) + r(t), (1)

where M is the number of modes and gm, Am(t), fm, and φ0,m are
the gain, amplitude envelope, frequency (Hz), and initial phase of
each mode m, respectively. In previous work, the amplitude enve-
lope is assumed to have the form Am(t) = e−αt, where α is the de-
cay constant. This is a good representation for some impact sounds,
especially metals. But the amplitude envelopes for recorded sounds
are seldom perfectly exponential. We allow Am(t) to be an arbi-
trary function, which allows us to support a much broader class of
sounds, such as those arising from energy transfer between modes
[Chadwick et al. 2009]. We also add a residual term r(t), which
can capture components of a sound, such as noise, that are not in-
cluded in the modal model. Because the combination of arbitrary
envelopes and the residual can more faithfully represent the details
of the input clip from which they are computed, they can greatly
improve the quality of the synthesized sounds.

Because the ideal exponential decay arises from a simplified vibra-
tional (modal) model and assumes a impulsive impact, it fails to
capture complex physical interactions during impacts of real world
objects.



In this section we describe how we derive the mode parameters by
analyzing an input clip and how the synthesis is coupled with a
rigid-body physics simulation. We then discuss how to obtain vari-
ations of impact sounds using modal synthesis. Finally, we present
a number of optimizations that are important for meeting tight per-
formance and memory requirements.

3.1 Analysis

To compute the mode parameters, we analyze the short-time Fourier
Transform (STFT), just as in SMS [Serra and Smith 1990]. (The
STFT is formed by concatenating the Fourier transforms of a sliding
window over the signal.) In a spectrogram (magnitude of the STFT)
modes show up as strong peaks that persist over time at the same
frequency (e.g. see Figure 2). To identify modes we can identify
the strongest peaks (in terms of power) within a user specified time
slice of the spectrogram, usually near the onset of the sound where
high frequency modes have not fully decayed. Because some peaks
may be due to noise, we actually allow the user to select a region
covering multiple slices. If the percentage of the slices in which
a peak appears is over a given threshold, it is selected as a mode.
Once we have identified a mode, we extract its frequency fm and its
amplitude envelope Am(t), consisting of a sample per time slice.
We obtain the residual r(t) as in SMS by synthesizing the modal
component and subtracting it from the original signal.

The fidelity of the modal component depends on how well the mode
parameters are estimated. Due to intrinsic properties of the STFT,
accurate parameter estimation is limited to sinusoids whose fre-
quencies and amplitude change slowly over time and that are not
spaced too closely together. Our constant frequency assumption
places further restrictions on the sinusoids we can accurately es-
timate, but leads to a faster implementation. This means that not
all impact sounds can be faithfully modeled with modal synthesis.
The technique is particularly well suited for sounds with strong res-
onances.

The performance of the synthesis step depends on the number of
modes, so we would like to utilize as few modes as possible. With-
out a residual, the fidelity also depends on the number of modes
used. To enable the user to make a performance/quality trade off,
we provide a slider controlling the number of modes to use. Modes
are prioritized by their maximum power. Our analysis tool is inter-
active, so the user can easily optimize the mode count by decreasing
slider to just before the point where the quality of the synthesized
sound begins to degrade.

The use of the residual introduces several interesting tradeoffs be-
tween memory, computation, and quality. The residual often re-
quires more memory than the modal representation but offers the
best possible quality. Modes left out of the modal representation
fall into the residual, so overall quality is not lost with few modes,
but they no longer contribute to the variation of the sound. In addi-
tion, the magnitude of the residual grows. If it becomes too large,
the residual can drown out the variation in the sound we synthesize
from the modal representation. On the other hand, removing modal
components from the residual can make it shorter. For sounds with
a strong modal component, the energy in the residual is mostly
noise concentrated near the attack. The tail is empty and can be
clipped. In general, we have found that letting the short duration,
high frequency modes fall into the residual keeps the residual short
while maintaining fidelity and improving performance.

3.2 Physics engine integration

The physics engine supplies the sound system with impulses aris-
ing from object collisions. An impulse is translated into an audio

g
a
in

 

frequency 

fr
e
q

u
e
n

cy
 

time 

g
a
in

 

frequency 

fr
e
q

u
e
n

cy
 

time 

g
a
in

 

frequency 

fr
e
q

u
e
n

cy
 

g
a
in

 

frequency 

fr
e
q

u
e
n

cy
 

time time 

Figure 2: (Top-left) Mode gains (in dB) and spectrogram of a
metallic impact sound. The modes correspond to the streaks in the
spectrogram. (Top-right) The mode gains have been randomized to
create a variation of the sound. (Bottom-left) The spectral enve-
lope and spectrogram of a footstep sound with a more broadband
spectrum. (Bottom-right) A number of randomized dip filters (gray)
combine to modify the spectral envelope (blue) to create a variation
for the sound.

event. A new voice is created and we initialize the mode gains gm
proportional to the impulse value. The sound system then requests
audio from the voice, one frame at a time (typically 1024 samples
at 48 kHz).

Multiple simultaneous impacts can cause problems when using the
same prerecorded clip for all impacts. Because the waveforms for
the sounds of each impact are all the same, the peaks in the wave-
forms all line up, and when added together, saturate the dynamic
range of the signal. To avoid this problem with modal synthesis we
randomize the initial phases φ0,m. We can do this without affecting
the sound because, in most cases, a human listener is insensitive
to phase. The audio engine coalesces events during one frame and
processes them together at the beginning of the next. If the time of
the corresponding collision that generated an event is known, the
actual onset of the sound can be delayed appropriately. If not, (as
in our case) we add a bit of random delay to spread the impacts out
slightly in time. This improves the overall sound and can also help
somewhat with the clipping problem. Spreading impacts out over
multiple frames can also help avoid peaks in computational load
[Bonneel et al. 2008].

3.3 Variation

A typical object will sound different depending on where it is
struck. The reason for this is that each resonant mode is excited by a
different amount depending on the location of impact. Modal mod-
els derived from 3D geometry can explicitly account for this spatial
variation. In our data-driven approach, we have only one clip and
do not know anything about the geometry or material properties of
the object that generated the sound, and even if we did, they might
not be the same as the object to which the sound is being applied.



We can, however, capture the qualitative aspect of striking an object
at random locations by randomizing the mode gains.

The qualitative effect of spatial variation is to attenuate the low fre-
quencies in fine structures or near edges. For example, hitting a box
near its edge results in a higher pitched sound than in the center of
one of its faces. One possible heuristic approach to capture this ef-
fect might be to use a high pass filter on the synthesized sound, with
the high pass cutoff encoded in a texture map applied to the object.

3.3.1 Artistic control

In order to give an audio designer artistic control over the amount of
variation, we introduce a parameter v ∈ [0, 1] that varies between
no variation (v = 0) and full variation (v = 1). The actual mode
gain gm that we use for each mode is:

gm(v) = lerp(1, ξ, α(v))/c(v) (2)

lerp(x0, x1, α) = x0 + α(x1 − x0) (3)

α(v) = bias(v, 0.9) (4)

c(v) =
√

1− α(v) + α(v)2/3 (5)

bias(x, b) =
x

(1/b− 2)(1− x) + 1
(6)

where ξ ∈ [0, 1] is a uniform random number. The lerp function
(Eq. 3) linearly interpolates between x0 at α = 0 and x1 at α = 1.
If we use α = v directly, then the perceived change in variation
with a change in v is nonlinear. With equal sized steps in v the
variation changes much more quickly for v close to 1. To make
the v parameter easier to use, we smooth out this nonlinearity using
the bias function [Schlick 1994] (Eq. 6). Intuitively speaking, the
bias function pushes the value of its argument x ∈ [0, 1] closer to
1 for b > 0.5 and closer to 0 for b < 0.5. We found that b = 0.9
gives good results. Since average power is proportional to ampli-
tude squared, we normalize average power with the c(v) term, the
square root of the expected value of the numerator of gm(v).

3.4 Optimizations

In order to meet the memory and performance demands of a console
game, we use a number of optimizations. To encode the mode pa-
rameters, we use a representation that is quite compact, yet simple
enough that it can be used directly for high-performance synthe-
sis. We avoid complex compression schemes that would require
too much memory or computational overhead for decompression.
We also use a quality scaling technique to impose an upper limit on
the number of modes that need to be stored and processed. To save
computation we mix lower frequency modes at lower rates. Finally,
we utilize SIMD vector instructions to speed up the computation of
the synthesis equation.

3.4.1 Representation

Using the sampled amplitude envelope rather than fitting it to an
exponential decay model results in better quality, but takes up more
memory. To reduce the size of the data, we use a combination
of simplification, compaction, and quantization for amplitude en-
velopes.

Simplification. Amplitude envelope samples are stored using a log-
arithmic scale. To simplify the envelopes we first clamp all values
below a user specified noise floor (e.g. −81 dB relative to 0 dB
maximum amplitude). Modeling the often erratic amplitude varia-
tions below this level does not produce meaningful results. We then
simplify the finely sampled envelopes by removing samples one by
one until we reach a user specified number of samples. At each

step we greedily remove the sample that causes the smallest change
in error. The error is measured as the sum of squared differences
between samples in the original envelope and corresponding inter-
polated values of the simplified the envelope. To simplify the rep-
resentation, we process all the envelopes together so that they share
a common set of sample locations. This algorithm is similar to
one described by Horner and Beauchamp [Horner and Beauchamp
1996], except that our approach is bottom-up while theirs is top-
down. The algorithm is fast enough to be interactive, enabling the
user to easily modify the number of samples (using a slider) until
the desired quality/size tradeoff is achieved. We note that the sam-
ples tend to cluster near the initial attack of the sound where most
of the complexity lies rather than in the simpler tail that typically
exhibits more or less exponential decay. For an ideal exponential
decay, this algorithm simplifies an envelope down to a single line
segment. To reproduce the sound most accurately when using sim-
plified envelopes, it is important to linearly interpolate amplitudes
in log space. We typically see a 3–4 times reduction in envelope
samples from this step.

Compaction. Compaction exploits the fact that many modes die off
quickly. Once a mode’s amplitude envelope reaches and remains
below the noise floor we can truncate it because it will make no au-
dible contribution to the signal. We store only the span of envelope
samples for which a mode is active. We pack the spans together into
a single array, storing the offset of each span in a table. Compaction
commonly yields a 25-50% size reduction.

Quantization. We have found that quantizing the amplitude values
to 8-bits yields very little or no perceptual difference in the syn-
thesized sound (loudness discrimination for humans is about 1 dB
over all frequencies [Jesteadt et al. 1977]). This gives an additional
factor of 4 savings over floating point amplitude values.

The size of the residual can usually be reduced as well. For some
sounds, the residual is small enough that it can be left out. As men-
tioned previously, the tail of the residual can be clipped. Since the
residual is also noisy, it can often be heavily compressed without
introducing noticeable artifacts. When the residual is small, the
modal+residual model can actually be much smaller than the origi-
nal input.

3.4.2 Quality scaling

The amount of computation required for modal synthesis at any
point in time depends on the number of active modes, which is
highly variable. For a single impact, the mode count starts out
high and then tapers off (see Figure 4). The number of modes
also varies depending on the number of objects that are generat-
ing sound. Sharp spikes in computational load are undesirable for
games. Predictable performance is preferred because it simplifies
the task of balancing computational resources. Moreover, if the
time to perform the synthesis becomes longer than the time to play
a frame of audio, then the audio system will become starved for
frames, resulting in jarring clicks and pops. Therefore to ensure that
the computation time stays bounded we utilize a mode quota. When
we exceed the quota, we prioritize the modes by power and drop
lower priority modes. The effect of dropping modes is to gracefully
degrade quality and is usually imperceptible. Under extreme condi-
tions (many simultaneous impacts) the typical effect is a reduction
in high frequencies, as these tend to have the lowest power. We
automatically tune the mode quota to meet a specified CPU usage
limit.

An additional benefit of the mode quota is that it puts an upper limit
on the memory that will be consumed by modal synthesis voices.
Each voice maintains the state for all of its active modes. With a
large number of voices, the size of that state could become so large



as to erase the memory savings that were one of the motivations
for using modal synthesis in the first place. The mode quota pro-
vides a solution to this problem by placing tight bounds on memory
consumption.

Because our representation ensures that the number of modes de-
creases monotonically over time, we only need to perform quality
scaling when new voices are introduced to the system. We compute
the sum S of all active modes over all voices and then reduce the
number of modes for each voice by the fraction (S −B)/S, where
B is the mode budget. Better results may be achieved by remov-
ing the (S − B) lowest priority modes instead of removing a fixed
fraction of modes from all active voices, but we have not yet tried
this. We would also like to try clustering voices as in Tsingos et al.
[2004].

3.4.3 Multirate mixing

To accelerate modal synthesis we mix lower frequency modes at a
lower rate [Phillips 1999]. We first divide the modes into frequency
bands (e.g. Figure 4). We mix the bands from lowest to highest fre-
quency, using a 2× interpolation filter to convert the sampling rate
from one band to the next. The interpolation filter slightly increases
the complexity of the mixing because it requires values beyond the
edge of the frame (we use an 8-tap filter). Multirate mixing adds a
small constant overhead for rate conversion between bands, but for
sounds that have a large number of low frequency modes, which is
generally the case for impact sounds, the savings can be significant.
For sounds having few low frequency modes, single rate mode mix-
ing should be used to avoid the overhead.

When the span of amplitude data for a mode comes to an end, the
mode is terminated. Terminated modes are removed at the end of a
frame and the oscillator array is compacted. Oscillators are stored
in order of frequency to facilitate multirate mixing. For quality
scaling, it is necessary to remove the nodes in order of priority.
Therefore we maintain linked list of modes in priority order, which
is also compacted when terminated modes are removed.

3.4.4 SIMD optimization

Mode mixing is a highly data-parallel operation that lends itself
well to optimization on the GPU or a SIMD instruction set. We
have explored both options but focus on SIMD optimizations in this
paper. SIMD instruction sets typically lack a fast vector sin() func-
tion. But since mode frequency is constant, we can use complex
harmonic oscillators to generate the sinusoids for modal synthesis.
The sin() function of Equation 1 for mode m and sample k is com-

puted as Im{c
(k)
m }, where c

(k)
m = c

(k−1)
m ∆cm, ∆cm = e2πifm/fs ,

c
(0)
m = ∆cmeφ0,m , and fs is the sampling rate (typically 48000

Hz). The multiplier ∆cm for each oscillator cm can be precom-
puted and shared between voices to save memory.

We process modes in blocks. For each block, we store oscillators
and their amplitudes (premultiplied by the mode gains) in vector
registers. The real and imaginary components of complex values
are stored in separate registers that are four floats wide. At each
step we convert log scale amplitudes to linear scale, multiply them
by the corresponding imaginary component vectors of the oscilla-
tors, sum the results into a single vector register, and take a dot
product with (1, 1, 1, 1) to get a single scalar sample value. This
value is then added into the audio frame buffer. Then we update the
amplitudes and oscillators and repeat for the rest of the samples.

Floating point vector instructions are usually pipelined. When the
block size is small, instruction dependency stalls are more likely to
occur, decreasing efficiency. For smaller block sizes, we compute

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 4 8 16

M
o

d
e

 C
a

p
a

ci
ty

 

Samples per step 

4

8

16

32

64

Figure 3: Number of modes that can be handled with a frame size
of 1024 samples and a 48 kHz sampling rate for a varying number
of modes per block.

multiple samples per step to increase the available instruction par-
allelism and avoid stalls. We do this by recursively doubling the
increment values until we reach the desired power-of-two step size.
Efficiency with small block sizes is especially important with mul-
tirate mixing because band boundaries fragment large mode blocks
into smaller ones.

4 Variation for nonmodal sounds

We would like to be able to apply variation to sounds that are not
represented well by modal synthesis. Based on the observation that
convincing variation can be generated by randomizing mode gains,
we developed a simple filter that attenuates random portions of the
frequency spectrum. This can be viewed as a type of subtractive
synthesis [Cook 2002]. The filter can produce natural sounding
variation for many sounds.

Our variation filter is a cascade of biquad dip (or cut) filters [Zölzer
1997] (see Figure 2). The user specifies the number of dip filters to
use. This is analogous to the number of modes for modal synthesis,
except that each filter affects a broader range of frequencies. We
have obtained good results with about 10 filters. The filters are
centered at random frequencies (on the log frequency scale). The
user also specifies a range for a random filter gain and the a random
Q-factor. The Q-factor is related to the width of the dip.

The variation filter is complementary to modal synthesis. While
randomized mode gains alter the frequency at specific frequencies
where most of the power is concentrated, the variation filter affects
broader swaths of the frequency spectrum. The sounds for which
the variation filter seems to work best have broadband spectra that
are difficult to represent with a collection of narrow band modes
(like “Rock” in Figure 5).

Quality scaling can be applied to the variation filter to limit memory
and computation usage by scaling back the number of dip filters
used.

SIMD optimization. We vectorize the filters by processing 4 sam-
ples at a time. As with modal synthesis, we process blocks of dip
filters at a time. With too few filters, we run into problems with
dependency stalls. To ameliorate this problem, the recursive filter
can be unrolled to generate more instructions that can be run in be-
tween dependent instructions [Trebien and Oliveira 2009] in order
to eliminate pipeline stalls, but this comes at the expense of more
operations per sample.



0

20

40

60

80

100

120

Time

M
o

d
e
 C

o
u

n
t

 

 
 1200

 2400

 4800

24000

0

0.05

0.1

0.15

0.2

Time
M

ix
 t

im
e
 (

m
s
)

 

 
No MR

MR

Interp

Figure 4: (Left)The number of active modes per band over the du-
ration of an impact sound at 48000 Hz sampling rate. The colors
correspond to the band cutoff frequency in Hz. (Right) The compute
time with (MR) and without (No MR) multirate mixing. The over-
head for interpolating between bands (Interp) is also shown. For
this sound, multirate mixing gives up to a 2× speed up.

5 Implementation and results

We implemented our techniques on the Xbox360 game console.
We perform all of our computation using the CPU of the Xbox360.
The GPU is likely a good candidate for some of these computations
[Zhang et al. 2005; Trebien and Oliveira 2009], but we have not yet
pursued this option. The Xbox360 has 3 Xenon CPUs running at
3.2 GHz, each with 2 hardware threads. The CPUs use a modifica-
tion of the VMX (Altivec) instruction set with 4-wide SIMD vectors
and 128 vector registers. There are two sets of vector pipelines, one
for simple operations, such as permutations, loads, and stores, and
another for more complex operations like floating point math and
dot products. Because instructions are processed in pairs, it is pos-
sible for some vector instructions to coissue. We make heavy use
of vector intrinsics for our implementation, relying on the compiler
to optimize instruction scheduling. We have found that the current
compiler (XDK 11164.1) sometimes generates unnecessary depen-
dency stalls and sometimes fails to fully exploit coissue. Coding in
assembly language would correct these problems, but we have not
yet done this.

As described in Section 3, we interpolate amplitude envelope data
in the logarithmic space. This requires computing an exponential
per sample to convert to linear magnitude. Fortunately, this adds
very little to overall run time because the Xbox360 has an exponen-
tial estimate instruction with sufficient accuracy for audio (16-bits).

Figure 3 shows the efficiency of our vectorized implementation of
Equation 1 for various block configurations. The large number of
vector registers on the Xbox360 allows us to perform the compu-
tations completely in registers for up to 64 modes. Figure 4 shows
the performance of multirate mixing. We see typical speed ups of
up to 2 times. For the sounds that we use, we have found that the
greatest savings are obtained with 3–4 bands.

We have implemented modal synthesis and the variation filter as
plugins for the Wwise audio engine. In this way, our algorithms
can be incorporated directly into an existing pipeline without mod-
ification.

The accompanying video contains a number of examples of the ap-
plication of modal synthesis and the variation filter to various sound
clips. We also demonstrate the use of our system in a modified ver-
sion of the game Crackdown II. For several objects, we have either
replaced the sound clips that the artist originally used with a modal
synthesis plugin or we have applied the variation filter, resulting in
a reduction from the typical 3–5 clips used for each sound down
to 1 or 2. For some sounds, the modal synthesis+residual model
can yield additional memory savings (see Figure 5). This is espe-

 

Sound 

Original 

Size 

Modal 

Size 

Mode 

Count 

Residual 

Size 

Brass Bell 550K(18.5K) 492 6 65.2K(3.2K) 

Plastic Barrel 141K(2.4K) 998 23 28.7K(1.7K) 

Wooden Box 14K(2.2K) 2381 65 21.1K(1.7K) 

Rock 205K(1.6K) 4064 120 11.9K(1.1K) 

Figure 5: This table shows the sizes in bytes of the original input
file, the modal representation, and the residual for a number of dif-
ferent objects. The compressed size of the original and residual are
also shown in parentheses. For comparison, both the original and
the residual were compressed with XMA2 using the maximum pos-
sible compression. While the maximum compression is sufficient for
the residual, a lower setting, and thus a larger size, is required to
get satisfactory quality for the original clip.

cially true of metallic objects with a long ring (e.g. a bell). Clips
on the Xbox360 are usually compressed with XMA, a variant of
WMA, because there is a XMA decoder in hardware. After XMA
compression, most of the memory savings with our method comes
from a reduced number of clips rather than the size of the modal
representation itself.

5.1 Limitations

Arbitrary amplitude envelopes generate better sounds than the ideal
exponential decay model, but they do come with a modest cost.
The mode amplitude has to be tracked separately from the sinusoid,
rather than being folded into the complex oscillator as with expo-
nential decay.

Because our current variation techniques only modify the frequency
content of a sound, they are sometimes unsatisfactory for im-
pact sounds composed of many smaller impacts or fractures. Our
methods produce no variation in the timing between these “micro-
events”, which can sound unnatural. Granular synthesis is a promis-
ing avenue for generating these kinds of variations [Picard et al.
2009].

Our current preprocessing tool has a number of parameters. To
relieve the burden on the user we would like to further automate
the tool. For example, by introducing a perceptual quality metric, it
should be possible to compute an initial set of parameters that are
close to optimal. The user could then make a few small tweaks if
desired.

6 Conclusion

We have presented a system for synthesizing variations of impact
sounds in real-time. We use both modal synthesis and a simple, ran-
domized filter. Our methods enable us to save memory on gaming
consoles and meet the performance requirements of a game. We
demonstrate the system in an actual video game. We have found
that arbitrary amplitude envelopes extracted from actual recordings
can greatly improve the quality of modal synthesis over an ideal
exponential decay.

References

BONNEEL, N., DRETTAKIS, G., TSINGOS, N., DELMON, I. V.,
AND JAMES, D. 2008. Fast modal sounds with scalable
frequency-domain synthesis. ACM Transactions on Graphics
(SIGGRAPH Conference Proceedings) 27, 3.



CHADWICK, J. N., AN, S. S., AND JAMES, D. L. 2009. Har-
monic shells: a practical nonlinear sound model for near-rigid
thin shells. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia
2009 papers, ACM, New York, NY, USA, 1–10.

COOK, P. R. 2002. Real Sound Synthesis for Interactive Applica-
tions (Book & CD-ROM), 1st ed. AK Peters, Ltd.

HORNER, A., AND BEAUCHAMP, J. 1996. Piecewise-linear ap-
proximation of additive synthesis envelopes: A comparison of
various methods. Computer Music Journal 20, 2, 72–95.

JESTEADT, W., WIER, C. C., AND GREEN, D. M. 1977. Intensity
discrimination as a function of frequency and sensation level.
The Journal of the Acoustical Society of America 61, 1, 169–
177.

O’BRIEN, J. F., SHEN, C., AND GATCHALIAN, C. M. 2002.
Synthesizing sounds from rigid-body simulations. In SCA ’02:
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM, New York, NY, USA,
175–181.

PHILLIPS, D. K. 1999. Multirate additive synthesis. Computer
Music Journal 23, 1, 28–40.

PICARD, C., TSINGOS, N., AND FAURE, F. 2009. Retargetting
example sounds to interactive physics-driven animations. In AES
35th International Conference-Audio for Games, London, UK.

RAGHUVANSHI, N., AND LIN, M. C. 2007. Physically based
sound synthesis for large-scale virtual environments. IEEE Com-
puter Graphics and Applications 27, 1, 14–18.

SCHLICK, C. 1994. Fast alternatives to Perlin’s bias and gain
functions. In Graphics Gems IV. Academic Press Professional,
Inc., San Diego, CA, USA, 401–403.

SERRA, X., AND SMITH, J. 1990. Spectral modeling synthesis a
sound analysis/synthesis based on a deterministic plus stochastic
decomposition. Computer Music Journal 14, 12–24. SMS.

TREBIEN, F., AND OLIVEIRA, M. 2009. Realistic real-time sound
re-synthesis and processing for interactive virtual worlds. The
Visual Computer 25, 5 (May), 469–477.

TSINGOS, N., GALLO, E., AND DRETTAKIS, G. 2004. Percep-
tual audio rendering of complex virtual environments. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers, ACM, New York,
NY, USA, vol. 23, 249–258.

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. FoleyAu-
tomatic: physically-based sound effects for interactive simula-
tion and animation. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 537–544.

ZHANG, Q., YE, L., AND PAN, Z. 2005. Physically-based sound
synthesis on GPUs. In Entertainment Computing - ICEC 2005,
F. Kishino, Y. Kitamura, H. Kato, and N. Nagata, Eds., vol. 3711.
Springer Berlin Heidelberg, Berlin, Heidelberg, ch. 32, 328–333.

ZÖLZER, U. 1997. Digital Audio Signal Processing. John Wiley
& Sons Software.


